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Abstract

The frequency moments of a sequence containing m~ ele-

ments of type i, for 1 ~ z ~ n, are the numbers F& =

~~=1 m?. We consider the space complexity of randomized

algorithms that approximate the numbers Fk, when the el-

ements of the sequence are given one by one and cannot be

stored. Surprisingly, it turns out that the numbers FO, F1

and F2 can be approximated in logarithmic space, whereas

the approximation of F& for k ~ 6 requires nQ(l) space. Ap-

plications to data bases are mentioned as well.

1 Introduction

Let A=(al, az, . . ..a~ ) be a sequence of elements, where

each a~ is a member of N = {1,2, . . . ,n}. Let m, = I{j :

a,j =
~} I denote the number of occurrences of i in the se-

quence A, and define, for each k ~ O

In particular, F. is the number of dktinct elements appear-

ing in the sequence, F1 ( = m) is the length of the sequence,

and Fz is the repeat rate or Gini’s index of homogeneity

needed in order to compute the surprise imdez of the se-

quence (see, e.g., [11]). It is also natural to define

F- = ~~%~n m~ .
— —
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The numbers F& are called the frequency moments of A and

provide useful statistics on the sequence.

The frequency moments of a data set represent important

demographic information about the data, and are important

features in the context of database applications. Indeed,

Haas et al [13] claim that virtually all query optimization

methods in relational and object-relational database sys-

tems require a means for assessing the number of distinct

values of an attribute in a relation, i.e., the function FO for

the sequence consisting of the relation attribute.

The frequency moments Fk for k ~ 2 indicate the degree

of skew of the data, which is of major consideration in many

parallel database applications. Thus, for example, the de-

gree of the skew may determine the selection of algorithms

for data partitioning, aa discussed by DeWltt et al [6] (see

also references therein). In particular, F2 is used by Ioan-

nidis and Poosala [14] for error estimation in the context of

estimating query result sizes and access plan costs. Their

method is based on selecting appropriate histograms for a

small number of values to approximate the frequency distri-

bution of values in the attributes of relations. The selection

involves joining a relation with itsel~ note that F2 is the

output size of such join.

recently Haas et al [13] considered sampling based algo-

rithms for estimating FO, and proposed a hybrid approach

in which the algorithm is selected baaed on the degree of

skew of the data, measured essentially by the function F2.

Since skew information plays an important role for many

apphcations, it may be beneficial to maintain estimates for

frequency moments; and, most notably, for F2. For efficiency

purposes, the computation of estimates for frequency mo-

ments of a relation should preferably be done and updated

as the records of the relation are inserted to the database.

The general approach of maintaining views, such aa distri-

bution statistics, of the data has been well-studied m the

problem of incremental view maintenance (cf. [10]).

Note that it is rather straightforward to maintain the

(exact) frequency moments by maintaining a full histogram

on the data, i.e., maintaining a counter m, for each data

value 2C{l,2, ..., n}, which requires memory of eize Q(n)
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(cf. [16]). However, it is important that the memory used for

computing and maintaining the estimates be limited. Large

memory requirements would require storing the data struc-

tures irl external memory, which would imply an expensive

overhead in access time and update time. The restriction

on memory size is further emphasized by the observation

that typically incoming data records will belong to different

relations that are stored in the database; each relation re-

quires its own separate data structure. Thus, the problem

of computing or estimating the frequency moments in one

pass under memory constraints arises naturally in the study

of databases.

There are several known randomized algorithms that ap-

proximate some of the frequency moments F~ using limited

memory. For simplicity, let us consider first the problem

of approximating these numbers up to some fixed constant

factor, say with relative error that does not exceed 0.1, and

with success probability of at least, say, 3/4, given that

m < nc’(’). (In the following sections we consider the gen-

eral case, that is, the space complexity as a function of n,

m, the relative error A and the error-probability e.) Mor-

ris [17] (see also [7], [12] ) showed how to approximate F1

(that is; how to design an approximate counter) using only

O(lg lg m) (= O(lg lg n) ) bits of memory. Flajolet and

Martin [8] designed an algorithm for approximating Fo using

O(lg n) bits of memory. (Their analysis, however, is based

on the assumption that explicit families of hash functions

with very strong random properties are available. ) Whang

et al [19] considered the problem of approximating FO in the

context of databases.

Here we obtain tight bounds for the minimum possible

memory required to approximate the numbers F~. We prove

that for every k >0, Fk can be approximated randomly us-
1– 1/k lg ~) memory bits. We further showing at most O (n

that for k z 6, any (randomized) approximation algorithm

for Fk requires at least fl(TZ1-5/~ ) memory bits and any

randomized approximating algorithm for F- requires Q(n)

space. Surprisingly, F2 can be approximated (randomly)

using on Iy O(lg n) memory bits.

In acldition we observe that a version of the Flajolet-

Martin algorithm for approximating FO can be implemented

and analyzed using very simple linear hash functions, and

that (not surprisingly) the O(lg Ig n) and the O(lg n) bounds

in the algorithms of [17] and [8] for estimating F1 and FO

respectively are tight.

We also make some comments concerning the space com-

plexity of determinist~c algorithms that approximate the fre-

quency moments Fk as well as on the space complexity of

randomized or deterministic algorithms that compute those

precisely.

The rest of this extended abstract is organized as follows.

In Section 2 we describe our space-efficient randomized al-

gorithms for approximating the frequency moments. The

tools applied here include the known explicit constructions

of small sample spaces which support a sequence of four-

wise independent uniform binary random variables, and the

analysis is based on Chebyshev’s Inequality and a simple

application of the Chernoff bound. In Section 3 we present

our lower bounds which are mostly based on techniques from

communication complexity, The final Section 4 contains

some concluding remarks and open problems.

2 Space efficient randomized approximation algorithms

In this section we describe several space efficient random-

ized algorithms for approximating the frequency moments

Fk. Note that each of these moments can be computed pre-

cisely and deterministically using O(n lg m) memory bits, by

simply computing each of the numbers m, precisely. Using

the method of [17] the space requirement can be slightly re-

duced, by approximating (randomly) each of the numbers

m{ instead of computing its precise value, thus getting a

randomized algorithm that approximates the numbers Fk

using O(n lg lg m) memory bits. We next show that one can

do better.

2.1 Estimating Fk

The basic idea in our algorithm, as well as in the next ran-

domized algorithm described in this section, is a very natural

one. Trying to estimate Fh we define a random variable that

can be computed under the given space constraints, whose

expected value is Fk, and whose variance is relatively small.

The desired result can then be deduced from Chebyshev’s

Inequality.

‘I!heorem 2.1 For every k ~ 1, every A >0 and every e >0

there ex~sts a randomized algorithm that computes, given a

sequence A = (al ,.. .,a~) ofmembers of N={l,2, . . ..n}.

in one pass and using

o (klg (l/~)nl-llk(lgn + lgm)
J2

)

memory bits, a number Y so that the probability that Y de-

viates from Fk by more than ~Fk as at most c.

Proof. Without trying to optimize our absolute constants,

define .SI = ‘kn~~”k and 52 = 2 lg(l/c). (To simplify the

presentation we omit, from now on, all floor and ceiling signs

whenever these are not essential). We first assume the length

of the sequence m is known in advance, and then comment

on the required modifications if this is not the case.

The algorithm computes sz random variables Y1, . . . . Y.z

and outputs their median Y. Each Yi is the average of S1

random variables X~j : 1 ~ j ~ s 1, where the X,l are in-

dependent, identically distributed random variables. Each

of the variables X = Xtj is computed from the sequence in

the same way, using O(lg n + lg m) memory bits, as follows.

Choose a random member an of the sequence A, where the
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index p is chosen randomly and uniformly among the num-

bersl,2,. ... m,. Suppose that aP = 1 ( c N = {1,2,. . . ,n}.)

Let

‘r=l{q: q?p, ag=~}l(>l)

be the number of occurrences of 1 among the members of

the sequence A following aP (inclusive), and define

x = rrl(rk – (?-– 1)~)

Note that in order to compute X we only need to maintain

the lg n bits representing a~ = 1 and the lg m bits represent-

ing the number of occurrences of 1.

The expected value E(X) of X is, by definition,

E(X) =

a[(1’+(2’ -lk)+... +((m, (l)k))+))+
m

(lk +(2k -1’)+ . ..+(m~–(mz–l)k))++

(1’ + (2k - lk)+ . ..+(m~–(mn– l)’))]

=2
m! = Fk.

,=1

To estimate the variance Var(X) = E(X2) - (E(X))2 of X

we bound E(X2);

E(X2) =

Z [(12’ +(2’ - lk)2+... +(mf - (ml -l)k)’)+

(;k+(2k -lk)2-t- . ..+((m2(l) k)2)++)++

(12’ + (2’ - 1’)2 + . . . + (m: - (mn - 1) ’)2)]

~ m [ (kl’~-l +k2k-1(2k–lk) +...+

krn~-l(mf - (ml - 1)’))+ (kl’k-’ + k2k-l(2k - 1’)

+... +hr(m$((mz( l)–)) +)++...+

(kl’k-l -t- k2k-1(2k - 1’) -t . ..+

km:- 1(m: – (m. - 1)’))]

< m [km,~k-l +km~k-l +.. .+k?n~l-l ]

= kmF2k-1 = kFIFz’_l ,

where the first ineq. is obtained from the following inequality

which holds for any numbers a > b >0:

~k—bb= (a – b)(&l +czk-’b+ -- +Ctbk-2 +6’-’)

< (a – b),kak-l .

We need the following simple inequality:

Fact: For every n positive reals ml, m’ . . . . m~

(’jjm)(jjmT_l)<nl-’/k(~m$)2.—
i=l i=l ,=1

(Note that the sequence ml = n~lk, mz = . = m~ = 1

shows that this is tight, up to a constant factor. )

Proof (of fact ): Put M = maxl<,<nm,, then Mk S—-
~~=1 m: and hence

,=1 i=l ,=1

.=1 i=l
. .

< nl-l/k(~m~)l/k( ~m:)(2k-1)/k

i=l

where for the last inequality we use the fact that

(.ZV=I‘~) /n < (Z~=lm~/n)l/k ❑

By the above fact, the definition of the random variables

Y, and the computation above,

Var(Y,) =5 E(X2)/sl ~ kFIFzk_l/sl ~ knl-llkF~/sl ,

whereas

E(Yi) = E(X) = F’ .

Therefore, by Chebyshev’s Inequality and by the definition

of s 1, for every fixed i,

It follows that the probability that a single Y, deviates from

Fk by more than ~F’ is at most 1/8, and hence, by the stan-

dard estimate of Chernoff (cf., for example, [3] Appendix A),

the probability that more than sz/2 of the variables Y, de-

viate by more than ~Fb from Fk is at most e. In case this

does not happen, the median Y, supplies a good estimate to

the required quantity F’, as needed.

It remains to show how the algorithm can be imple-

mented in case m is not known in advance. In this case,

we start with m = 1 and choose the member al of the se-

quence A used in the computation of X as al. If indeed

m = 1, r = 1 and the process ends, else we update the

value of m to 2, replace al by a2 with probability 1/2, and

update the value of r as needed. In general, after process-

ing the first m — 1 elements of the sequence we have (for

each variable XtJ ) some value for at and for r. When the

next element am arrives we replace at by that element with

probability l/m. In case of such a replacement, we update

r and define it to be 1. Else, al stays as it is and r increases

by 1 in case am = al and otherwise does not change. It is

easy to check that for the implementation of the whole pro-

cess, O(lg n + lg m) memory bits for each X;j suffice. This

completes the proof of the theorem. ❑
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Remark. In case m is much bigger than a polynomial in

n, one can use the algorithm of [17] and approximate each

number r used in the computation of each X,J using only

O(lg lg m + lg(l/A)) memory bits. Since storing the value of

cu requires lg n additional bits this changes the space com-

plexity to O (wn’-’/~(lg n+lglgm+lg *)).

2.2 Improved estimation for FZ

The second frequency moment, Fz, is of particular interest,

since the repeat rate and the surprise index arise in various

statistical applications. By the last theorem, F2 can be ap-

proximated (for fixed positive A and e) using O(@(lg n -i-

lg m)) memory bits. In the following theorem we show that

in fact a logarithmic number of bits suffices in this case.

Theorem 2.2 For every A > 0 and e > 0 there exwts a

randomized algorithm that computes, grven a sequence A =

(al, . , am) of members of N, m one pass and uszng

(lg‘1”)(lgn + Igm)o — ~z
)

memory bits, a number Y so that the probabdity that Y devi-

ates fr~m Fz by more than AF2 u at most E. For fixed A and

e, the aigorzthm can be implemented by performing, for each

member of the sequence, a constant number of arithmetic

and finite field operations on elements of O(lg n + lg n) bats.

Proofe Put S1 = ~ and sz = 2 lg(l/e). As in the previous

algorithm, the output Y of the present algorithm is the me-

dian of S2 random variables YI, YZ, . . . . Ys,, each being the

average of S1 random variables X.7 : 1 ~ j s S1, where the

X,j are independent, identically distributed random vari-

ables. Each X = X,j is computed from the sequence in the

same way, using O(lg n + Ig m) memory bits, as follows.

Fix an explicit set V = {VI, . . . . vk} of h = 0(rL2) vec-

tors of length n with +1, – 1 entries, which are four-wise

independent, that is, for every four distinct coordinates 1 s

ii <... ~ i4 ~ n and every choice of C1, ... ,C4 G {–1,1}

exactly a (1/16)—fraction of the vectors have 63 in their

coordinate number ij for j = 1,...,4. As described in

[1] such sets (also known as orthogonal arrays of strength

4) can be constructed using the parity check matrices of

BCH codes To implement this construction we need an ir-

reducik,le polynomial of degree d over GF (2 ), where 2d is

the smallest power of 2 greater than n. It is not difficult

to find such a polynomial (using O(lg n) space), and once

it is given it is possible to compute each coordinate of each

v. in O (Ig n) space, using a constant number of mult implic-

ations in the finite field GF(2d) and binary inner products

of vectors of length d. To compute X we choose a random

vector VP = (cl, ez, . . . . en ) c V, where p is chosen uniformly

between 1 and h. We then define Z = ~~=1 .arn,. Note

that Z is a linear function of the numbers m., and can thus

be computed in one pass from the sequence A, where during

the process we only have to maintain the current value of

the sum and to keep the value p (since the bits of VP can

be generated from p in O(lg n) space). Therefore, Z can be

computed using only O(lg rz+lg m) bits. When the sequence

terminates define X = 22.

As in the previous proof, we next compute the expecta-

tion and variance of X. Since the random variables e, are

pairwise independent and E(e, ) = O for all i,

n

Similarly, the fact that the variables e, are four-wise inde-

pendent implies that

It follows that

Therefore, by Chebyshev’s Inequality, for each fixed i,

l<i<sz,

The standard estimates of Chernoff now imply, as in the

previous proof, that the probability that the median Y of

the numbers Y, deviates from Fz by more than ~Fz is at

most e, completing the proof. ❑

Remark. The space complexity can be reduced for very

large m to O (~ (Ig n + lg lg m + lg(l/A)) by applying

the method of [17] to maintain the sum Z with a sufficient

accuracy. The easiest way to do so is to maintain approxi-

mations of the negative and positive parts of this sum using

O(lg n + lg lg m + lg(l/A)) bits for each, and use the analysis

in [12] and Chebyshev’s Inequality to show that this gives,

with a sufficiently high probability, the required result. We

omit the details.

2.3 Comments on the estimation of FO

Flajolet and Martin [8] described a randomized algorithm

for estimating FO using only O(lg n) memory bits, and ana-

lyzed its performance assuming one may use in the algorithm

an explicit family of hash functions which exhibits some ideal

random properties. Since we are not aware of the existence

of such a family of hash functions we briefly describe here

a slight modification of the algorithm of [8] and a simple

analysis that shows that for this version it suffices to use a

linear hash function. For simplicity we only describe here
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the problem of estimating FO up to an absolute multiplica-

tive constant factor, with constant success probability. It is

possible to improve the accuracy and the success probability

of the algorithm by increasing the space it uses.

Proposition 2.3 For every c >2 there exists an algorithm

that, given a sequence A of members of N, computes a num-

ber Y using O(lg n) memory bits, such that the probability

that the ratio between Y and FO is not between l/c and c is

at most 2/c.

Proof. Let d be the smallest integer so that 2* > n, and

consider the members of N as elements of the finite field

F = GF(2*), which are represented by binary vectors of

length d. Let a and b be two random members of F, chosen

uniformly and independently. When a member ai of the

sequence A appears, compute z, = a . a, + b , where the

product and addition are computed in the field F. Thus

z, is represented by a binary vector of length d. For any

binary vector z, let r(z) denote the largest r so that the

r rightmost bits of z are all O and put r~ = T(Z; ). Let R

be the maximum value of r,, where the maximum is taken

over all elements a, of the sequence A. The output of the

algorithm is Y = 2~. Note that in order to implement the

algorithm we only have to keep (besides the d = O(lg n)

bits representing an irreducible polynomial needed in order

to perform operations in F) the O(lg n) bits representing

a and b and maintain the O(lg lg n) bits representing the

current maximum r~ value.

Suppose, now, that FO is the correct number of distinct

elements that appear in the sequence A, and let us estimate

the probability that Y deviates considerably from FO. The

only two properties of the random mapping f(z) = az + b

that maps each a, to z. we need is that for every fixed a~, z,

is uniformly distributed over F (and hence the probability

that T(Z, ) ~ r is precisely 1/2”), and that this mapping is

pairwise independent. Thus, for every fixed distinct a, and

aj, the probability y that r(z~ ) ~ r and r (zj ) z r is precisely

1/22” .

Fix an r. For each element x 6 N that appears at leaat

once in the sequence A, let Wz be the indicator random

variable whose value is 1 iff r(az + b) ~ r. Let Z = Z, =

~ Wz, where x ranges over all the FO elements z that appear

in the sequence A. By linearity of expectation and since the

expectation of each W= is 1/2’, the expectation E(Z) of Z

is F./2’. By pairwise independence, the variance of Z is

FO ~ (1 – ~) < Fo/2T. Therefore, by Markov’s Inequality

If 2“ > .Fo then Prob(Zr > O) < l/c,

since E(Z. ) = F./2’ < 1/c. Similarly, by Chebyshev’s In-

equality

If C2T < F. then Prob(Z, = O) < l/c,

since Var(Zr ) < Fe/2” = E(Z, ) and hence Prob(Z~ = O) s

Var(Z, )/( E(Z. )2) < l/E(Z~) = 2r/F0. Since our algorithm

outputs Y = 2R, where R is the maximum r for which Z, >

0, the two inequalities above show that the probability that

the ratio between Y and FO is not between 1/c and c is

smaller than 2/c, as needed. ❑

3 Lower bounds

In this section we present our lower bounds for the space

complexity of randomized algorithms that approximate the

frequency moments Fk and comment on the space required

to compute these moments randomly but precisely or ap-

proximate them deterministically. Most of our lower bounds

are obtained by reducing the problem to an appropriate

communication complexity problem, where we can either

use some existing results, or prove the required lower bounds

by establishing those for the corresponding communication

problem. The easiest result that illustrates the method is

the proof that the randomized approximation of F= requires

linear memory, presented in the next subsection. Before pre-

senting this simple proof, let us recall some basic definitions

and facts concerning the e-error probabilistic communication

complezzty Cc(f) of a function f : {O, l}n x {O, l}m + {O, 1},

introduced by Yao [20]. Consider two parties with unlim-

ited computing power, that wish to compute the value of

a Boolean function f (z, y), where x and y are binary vec-

tors of length n, the first party possesses z and the second

possesses y. To perform the computation, the parties are

allowed to send messages to each other, and each of them

can make random decisions as well. At the end of the com-

munication they must output the correct value of f(z, y)

with probability at least 1 — e (for the worst possible z and

y). The complexity C, (f) is the expected number of bits

communicated in the worst case (under the best protocol).

As shown by Yao [21] and extended by Babai, Frankl and

Simon [4], C,(f) can be estimated by considering the related

notion of the c-error distributional commwncation complex-

ity D, ( f [p) under a probability y measure on the possible in-

puts (z, y). Here the two parties must apply a deterministic

protocol, and should output the correct value of j(z, y) on

all pairs (z, y) besides a set of inputs whose p-measure does

not exceed e. As shown in [21], [4], C.(f) > ~D2c(flp) for

all f, e and p.

Let DIS~ : {O, l}n x {O, 1}* R {O, 1} denote the Boolean

function (called the Disjointness junction) where DISn (z, y)

is 1 iff the subsets of {1, 2, . . . n} whose characteristic vec-

tors are z and y intersect. Several researchers studied the

communication complexity of this function. Improving a re-

sult in [4], Kalyanaeundaram and Schnitger [15] proved that

for any fixed e < 1/2, C,(DISn) ~ Q(n). Razborov [18]

exhibited a simple measure ~ on the inputs of this function

and showed that for this measure D, (DIS~ Ip) ~ O(n). Our

lower bound for the space complexity of estimating F= fol-

lows easily from the result of [15]. The lower bound for the

approximation of Fk for fixed k ~ 6 is more complicated and



requires an extension of the result of Razborov in [18],

3.1 The space complexity of approximating F~

Proposition 3.1 Any randomized algorithm that outputs,

given a sequence A of at most 2n elements of N = {1,. . . . n}

a number Y such that the probability that Y deviates from

F- by at least Fw /3 is less than e, for some fixed e < 1/2,

must use Q(n) memory bits.

Proof. Given an algorithm as above that uses s memory

bits, we describe a simple communication protocol for two

parties possessing z and y respectively to compute DISn (x, y),

using only s bits of communication. Let Izl and Iyl denote

the numbers of l-entries of z and y, respectively. Let A be

the secpence of length lx I + Iyl consisting of all members of

the subset of N whose characteristic vector is z (arranged

arbitrarily) followed by all members of the subset of N whose

characl:eristic vector is y.

The first party, knowing z, runs the approximation al-

gorithm on the first [x [ members of A. It then sends the

content of the memory to the second party which, knowing

v! continues to run the algorithm for approximating F- on

the rest of the sequence A. The second party then outputs

“disjoint” (or O) iff the output of the approximation algo-

rithm is smaller than 4/3; else it outputs 1. It is obvious

that this is the correct value with probability y at least 1 – e,

since the precise value of F~ is 1 if the sets are disjoint, and

otherwise it is 2.

The desired result thus follows from the theorem of [15]

mentioned above. 0

Remark. It is easy to see that the above lower bound

holds even when m is bigger than 2n, since we may consider

sequences in which every number in N occurs either O or

m/n or 2m/n times. The method of the next subsection

shows that the linear lower bound holds even if we wish to

approxl~mate the value of Fm up to a factor of 100, say. It is

not diilicult to see that fl(lg Ig m) is also a lower bound for

the space complexity of any randomized approximation al-

gorithm for F~ (simply because its final output must attain

at least Q (lg m) distinct values with positive probability y, as

m is not known in advance. ) Thus C?(n + lg lg m) is a lower

bound for the space complexity of estimating F~ for some

fixed positive A and c. On the other hand, as mentioned in

the previous section, all frequency moments (including F~ )

can be approximated using O(n lg lg m) bits.

Note that in the above lower bound proof we only need a

lower bound for the one-way probabilistic communication

complexity of the disjointness function, as in the protocol

described above there is only one communication, from the

first party to the second one. Since the lower bound of [15]

holds for arbitrary communication we can deduce a space

lower bound for the approximation of Fm even if we allow

algorithms that observe the whole sequence A in its order a

constant number of times.

3.2 The space complexity of approximating Fk

In this subsection we prove the following.

Theorem 3.2 For any fixed k >5 and v < 1/2, any ran-

domized algorithm that outputs, given an input sequence A of

at most n elements of N = {1,2, . . . . n}, a number Zk such

that Prob(lZ~ – Fkl > O.lF~) < -y uses at least Q(nl-5ik)

memory bits.

We prove the above theorem by considering an appro-

priate communication game and by studying its complexity.

The analysis of the game is similar to that of Razborov

in [18], but requires several modifications and additional

ideaa. Proof, For positive integers s and t, let D(s, t)

be the following communication game, played by s play-

ers P1, P2, ..., P,. Define n = (2t – 1)s + 1 and put iV =

{1,2,... , n}. The input of each player P. is a subset A, of

cardina}ity tof N (also called a t-subset of N). Each player

knows his own subset, but has no information on those of

the others. An input sequence (Al, Az, . . . . A, ) is called dis-

joint if the sets A~ are pairwise disjoint, and it is called

uniquely intersecting if all the sets A, share a unique com-

mon element x and the sets A, — {z} are pairwise disjoint.

The objective of the game is to distinguish between these

two types of inputs. To do so, the players can exchange

messages according to any predetermined probabilistic pro-

tocol. At the end of the protocol the last player outputs a

bit. The protocol is called e-correct if for any disjoint input

sequence the probability that this bit is O is at least 1 — e

and for any uniquely intersecting input sequence the prob-

ability that this bit is 1 is at least 1 — .s (The value of the

output bit for any other input sequence may be arbitrary).

The length of the protocol is the maximum, over all possi-

ble input sequences (Al, . . . . As), of the expected number of

bits in the communication. In order to prove Theorem 3.2

we prove the following.

Proposition 3.3 For any fixed c < 1/2, and any t > S4,

the length of any randomized e-correct protocol for the com-

munication problem DIS(S, t) is at least fl(t/s3).

By the simple argument of [21] and [4], in order to prove

the last proposition it suffices to exhibit a distribution on

the inputs and prove that any deterministic communication

protocol between the players in which the total commu-

nication is less than i2(t/s3 ) bits produces an output bit

that errs with probability y Q(l), where the last probability

is computed over the input distribution. Define a distribu-

tion ~ on the input sequences (Al, . . . . A, ) as follows. Let

P= II U12 U... U lS U {z} be a random partition of N

into s + 1 pairwise disjoint sets, where 1lj I = 2t — 1 for

each 1 ~ j ~ s, z c N and P is chosen uniformly among

all partitions of N with these parameters. For each j, let

~J be a random subset of cardinality t of lJ. Finally, with

probability 1/2, define AJ = ~j for all 1 ~ j ~ s, and with
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probability 1/2, define Aj = (13 – X3) U {x} for all j. It is

useful to observe that an alternative, equivalent definition

is to choose the random partition P as above, and then let

each Aj be a random subset of cardlnality t of A~ U {z}. If

either none of the subsets A3 contain z or all of them contain

x we keep them as our input sets, and otherwise we discard

them and repeat the random choice.

Note that the probability that the input sequence

(A,,..., A.) generated under the above distribution is dis-

joint is precisely 1/2, whereas the probability that it is

uniquely intersecting is also 1/2. Note also that ~ gives

each disjoint input sequence the same probability and each

uniquely intersecting input sequence the same probability.

Let (A!,. . . . A:) denote a random disjoint input sequence,

and let (A;, . . . , A: ) denote a random uniquely intersecting

input sequence.

A box is a family xl x ~Z x . . . x ~., where each xi is

a set of t-subsets N. This is clearly a family of s-tuples oft-

subsets of N. Standard (and simple) arguments imply that

the set of all input sequences (Al, AZ, . . . . As ) corresponding

to a fixed communication between the players forms a box.

As we shall see later, this shows that the following lemma

suffices to establish a lower bound on the average commu-

nication complexity of any deterministic c-correct protocol

for the above game.

Lemma 3.4 There exists an absolute constant c >0 such

that for every box xl x ~z x . . . x ~.

-&Prob [( A:,... ,A~) E xl x . . ~ x 77,] – s2–ctls3

To prove the lemma, fix a box xl x ~z x . . . x ~,. Recall

that the distribution p on the inputs has been defined by first

choosing a random partition P. For such a partition P, let

Probp [Aj c ~j] denote the conditional probability that Aj

lies in ~j, given that the partition used in the random choice

of the input sequence (A 1, ..., A,) is P. The conditional

probabilities Probp [A; c ~j] and Probp [A; c 73] are de-

fined analogously. A partition P = 11 U I.z U . . . U A. U {z}

is called -j - bad, where j satisfies 1 < j s s, if

where c > 0 is a (small) absolute constant, to be chosen

later. The partition is bad if it is j-bad for some j. If it is

not bad, it is good.

We need the following two statements about good and

bad partitions.

Lemma 3.5 There eoists a choice for the constant c > 0

in the last inequality such that the following holds. For any

set of s - 1 pairwise disjoint t-subsets I: C N, (1 < r ~

s, r # j), the conditional probability that the partition P =

II U12 U... U I. U {x} is j-bad, given that IT = I; for all

r+j, is at most ~.

Proof. Note that since I, is known for all r # j, the union

IJ U {z} is known as well, and there are only 2t possibilities

for the partition P. If the number of t-subsets of lj U {z}

that belong to ~j is smaller than

()1 2t 2–et/.3

it

then for each of the 2t possible partitions P, ProbP [A$ 6

yj] < 2-W*’ implying that P is not j-bad. Therefore,

in this case the conditional probability we have to bound

is zero and the assertion of the lemma holds. Consider,

thus, the case that there are at least that many t-subsets of

13 U {z} in XJ, let F denote the family of all these t-subsets

and put lj U {z} = {x1, x2,. . . , zzt}. Let pi denote the

fraction of members of F that contain w, and let H(p) =

–p lg2 p – (1 – p) lgx (1 – p) be the binary entropy function.

By a standard entropy inequality (cf., e.g., [5]),

In order to determine the partition P = 11 U 12 U. .U IS U {x}

we have to choose one of the elements X2 as z. The crucial

observation is that if the choice of z~ as z results in a j-

bad partition P, then p, < (1 – ~)(1 - p,), implying that

H(pt) s 1- c’ /s2 for some absolute positive constant c’.

Let b denote the number of elements zi whose choice as z

results in a j-bad partition P. By the above discussion

This implies that if t/s3 is much larger than lg t,then b <

O(ct/s), and by choosing c to be sufficiently small this upper

bound for b is smaller than 2t /(20s), completing the proof

of the lemma. ❑

Lemma 3.6 ZfP= IIUIZU.. U I, U {x} is a good partition

then

Proof. By the definition of a good partition

for every j, 1 ~ j < s. Multiplying the above inequalities

and using the definition of the distribution p as well as the

fact that (1 – fi)s > ~ the desired result follows. ❑

Returning to the proof of Lemma 3.4, let x(P) be the

indicator random variable whose value is 1 iff P is a bad

partition. Similarly, let Xj (P) be the indicator random vari-

able whose value is 1 iff P is j-bad. Note that X(P) ~

x~=~Xj(p)



By computing the expectation over all partitions P

F’rob[(A~,. ... A~)6~lx~s]x~s]

—— E (ProbP [(A; ,. . . . A~)E~Ix..x~.])

> E(Probp [( A~,. ... A~)C~lx. ..x Z,]

.(1 –x(P))) > ~E (ProbP [(A!,..., A~) c

X1 X... x ~s] (1 – X(P))) – s’2-’t/” ,

where the last inequality follows from Lemma 3.6.

It follows that in order to prove the assertion of Lemma

3.4 it suffices to show that for every j, 1 S j S S,

E (ProbP [(A:,. . ,A~) ~ X1 x . . . x 7,] xj(P)) (1)

.> ~E(ProbP [( A~,. ... A~) cZl x . . . xx,]) . (2)
<,

Consider a fixed choice for the subsets I., r # j in the

definition of the partition P = 11 U 12 U. ~. U Is U {z}. Given

this choice, the union U = Ij U {x} is known, but the actual

element z should still be chosen randomly in this union.

Given the above information on P, the quantity (2) is

!.=]

and each of these factors besides the one corresponding to

r = j is fixed. The same s – 1 factors appear also in (1).

The last factor in the above product, ProbP [A: E X3], is

also easy to compute ae follows. Let 1 denote the number

of t-suklsets in XJ which are contained in Ij U {z}. Then

ProbP [.4: c ~j] is precisely 1/ (~). Note, also, that for any

choice c)f a member of U as z, theprobability y that A; lies

in ~i cannot exceed 1/ (zt~l) = 21/ (~). By Lemma 3.5, the

probability that xl (P) = 1 given the choice of 1,, r # j, is

at most 1/(20s) and we thus conclude that

Yl x... X7F.]) ,

implying the inequality in (1), (2) and completing the proof

of Lemma 3.4. •l

Proof of Proposition 3.3. Since it is possible to repeat

the protocol and amplify the probabilities, it suffices to prove

the awertion of the proposition for some fixed c < 1/2, and

thus it suffices to show that any deterministic protocol whose

length is smaller than f2(t/s3 ), applied to inputs generated

according to the distribution p, errs with probability 0(1).

It is easy and well known that any fixed communication

pattern corresponds to a box of inputs. Therefore, if the

number of communication patterns in the end of which the

protocol outputs O is smaller than ~2c*ls3 then, by summing

the assertion of Lemma 3.4 over all the boxes correspond-

ing to such communication patterns, we conclude that the

probability that the protocol outputs O on a random input

(A;, .,., A;) is at least & times the probability it outputs

0 on a random input (A?,. . . , A:) minus p. By choosing a

sufficiently small absolute constant p > 0 this shows that

in this case the algorithm must err with probability !2(1 ).

Thus, the nu~ber of communication patterns must be at

least Q( ~2ctfs ) and hence the number of bits in the com-

munication must be at least f2(t/s3). ❑

Proof of Theorem 3.2. Fix an integer k > 5. Given a

randomized algorithm for approximating the frequency mo-

ment Fh for any sequence of at most n members of ~ =

{1,2,... , n}, where n = (2t — 1)s + 17 using A4 memory

bits, we define a simple randomized protocol for the com-

munication game DIS(S, t) for s = nl/~, t = @(nl–l/~).

Let A1, Az, . . . , As be the inputs given tm the players. The

first player runs the algorithm on the t elements of his set

and communicates the content of the memory to the sec-

ond player. The second player then continues to run the

algorithm, starting from the memory configuration he re-

ceived, on the elements of his set, and communicant es the

resulting content of the memory to the third one, and so

on. The last player, player number s, obtains the out-

put zk of the algorithm. If it is at most 1.1st he reports

that the input sequence (Al, . . . . As ) is disjoint. Else, he

reports it is uniquely intersecting. Note that if the in-

put sequence is disjoint, then the correct value of Fk is st,

whereas if it is uniquely intersecting the correct value of Fk

is sk +s(t – 1) = n+ s(t - 1) > (3t – 2)s = (~ +o(l))n.

Therefore, if the algorithm outputs a good approximation to

Fk with probability at least 1 – ~, the protocol for DIS(S, t)

is -y-correct and its total communication is (s – 1) ill < sM.

By Proposition 3.3 this implies that SM ~ Q(t/s3), showing

that

M 2 Q(t/s4) = Q(n/s5) = Q(?zl-sfk)

This completes the proof. ❑

Remark. Since the lower bound in Proposition 3.3 holds

for general protocols, and not only for one-way protocols

in which every player communicates only once, the above

lower bound for the space complexity of approximating Fk

holds even for algorithms that may read the sequence A in

its original order a constant number of times.

We show in the remainder of this section that the ran-

domization and approximation are both required in the es-

timation of F~ when using o(n) memory bits.

3.3 Deterministic algorithms

It is obvious that given a sequence A, its length F1 can

be computed precisely and deterministically in logarithmic

space. Here we show that for any nonnegative k besides 1,

even an approximation of Fk up to, say, a relative error of 0.1

cannot be computed deterministically using less than a lin-

ear number of memory bits. This shows that the randomness

is crucial in the two approximation algorithms described in
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Section 2. This is a simple corollary of the known results

concerning the deterministic communication complexity of

the equality function. Since, however, these known results

are not dMicult, we present a self contained proof, without

any reference to communication complexity.

Proposition 3.7 For any nonnegative integer k # 1, any

deterministic algorithm that outputs, given a sequence A of

nf 2 elements Of N = {1, 2, ..., n}, a number Y such that

IY – F~l < O.lFk must use Q(n) memory bits.

Proof. Let ~ be a family of t = 2Q(”) subsets of N, each

of cardinality n/4 so that any two distinct members of L7

have at most n/8 elements in common. (The existence of

such a G follows from standard results in coding theory, and

can be proved by a simple counting argument). Fix a de-

terministic algorithm that approximates Fk for some fixed

nonnegative k # 1. For every two members GI and G2 of

G let A(G1, Gz) be the sequence of length n/2 starting with

the n/4 members of G1 (in a sorted order) and ending with

the set of n/4 members of Gz (in a sorted order). When the

algorithm runs, given a sequence of the form A(G1, Gz ), the

memory configuration after it reads the first n/4 elements of

the sequence depends only on GI. By the pigeonhole prin-

ciple, if the memory has less than lg t bits, then there are

two distinct sets G1 and Gz in ~, so that the content of the

memory after reading the elements of G1 is equal to that

content after reading the elements of GZ. This means that

the algorithm must give the same final output to the two

sequences A(G1, GI) and A(G2, G1 ). This, however, contra-

dicts the assumption, since for every k # 1, the values of Fh

for the two sequences above differ from each other consid-

erably; for A(G1, Gl), F. = n/4 and Fk = 2kn/4 for k ~ 2,

whereas for A(Gz, Gl), F. ~ 3n/8 and Fk ~ n/4 + 2kn/8.

Therefore, the answer of the algorithm makes a relative er-

ror that exceeds 0.1 for at least one of these two sequences.

It follows that the space used by the algorithm must be at

least lg t= Q(n),completing the proof. ❑

3.4 Randomized precise computation

As shown above, the randomness is essential in the two al-

gorithms for approximating the frequency moments Fk, de-

scribed in Section 2. In this subsection we observe that the

fact that these are approximation algorithms is crucial as

well, in the sense that the precise computation of these mo-

ments (for all k but k = 1) requires linear space, even if we

allow randomized algorithms,

Proposition 3.8 For any nonnegative integer k # 1, any

randomized algorithm that outputs, given a sequence A of at

most 2n elements of N = {1, 2, . . . . n} a number Y such that

Y = Fk wdh probability at least 1 – e for some fixed c < 1/2

must use Q(n) memory bits.

Proof. The reduction in the proof of Proposition 3.1 easily

works here as well and proves the above assertion using the

main result of [15]. ❑

4 Tight lower bounds for the approximation of Fo, F1, Fz

The results in [17], [8] and those in Section 2 here show

that logarithmic memory suffices to approximate randomly

the frequency moments FO, F~ and Fz of a sequence A of at

most m terms up to a constant factor with some fixed small

error probability. More precisely, O (lg lg m) bits suffice for

approximating F1, O(lg n) bits suffice for estimating F. and

O(lg n +lg lg m) bits suffice for approximating F2, where the

last statement follows from the remark following the proof

of Theorem 2.2. It is not difficult to show that all these

upper bounds are tight, up to a constant factor, as shown

below.

Proposition 4.1 Let A be a sequence of at most m ele-

ments of N= {1,2, . . ..n}.

(i) Any randomized algorithm for approximating F. up to

an additive error of O.lFO with probability at least 3/4 must

use at least fl(lg n) memory bits.

(ii) Any randomized algorithm for approximating F1 up to

O.lF1 with probability at least 3/4 must use at least fl(lg lg m)

memory bits.

(ii) Any randomized algorithm for approximating F2 up to

O.lF1 with probability at least 3/4 must use at least Q(lg n +

Ig Ig m) memory bits.

Proof (sketch).

(i) The result follows from the construction in the proof

of Proposition 3.7, together with the well known fact that

the randomized communication complexity of the equality

function f (x, y) whose value is 1 iff z = y, where z and y

are l-bit numbers, is El(lg 1).

(ii) Since the length F1 of the sequence can be any number

up to m, the final content of the memory should admit at

leaat !l(lg m) distinct values with positive probability, giving

the desired result.

(iii) The required memory is at least Q(lg n) by the argument

mentioned in the proof of part (i) and is at least Q(lg lg m)

by the argument mentioned in the proof of part (ii). ❑

5 Concluding remarks

We have seen that there are surprisingly space efficient ran-

domized algorithms for approximating the first three fre-

quency moments F., F1, Fz, whereas not much space can be

gained over the trivial algorithms in the approximation of Fk

for k ~ 6. We conjecture that an nnclj space lower bound

holds for any k (integer or non-integer), when k > 2. It

would be interesting to determine or estimate the space com-

plexity of the approximation of ~~=1 m! for non-integral

values of k for k <2, or the space complexity of estimating

other functions of the numbers m~. The method described

in Section 2.1 can be applied in many cases and give some
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nontrivial space savings. Thus, for example, it is not too dif-

ficult to design a randomized algorithm based on the general

scheme in Subsection 2.1, that approximates ~~=1 m; lg rm

up to some fixed small relative error with some small fixed

error-probability, using O(lg n Ig m) memory bits. We omit

the detailed description of this algorithm.

In a recent work [2] Alon et al presented an experimental

study of the estimation algorithms for Fz. The experimental

results demonstrate the practical utility of these algorithms.

The algorithms are also extended to deal with the fully dy-

namic case, in which set items may be deleted as well. We

finally remark that in practice, one may be able to obtain

estimation algorithms which for typical data sets would be

more efficient than the worst case performance implied by

the lower bounds. Gibbons et zd [9] recently presented an

algorithm for maintaining an approximate e list of the k most

popular items and their approximate counts (and hence also

approximating F-) using small memory, which works well

for frequency distributions of practical interest.
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